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Abstract

Chaotic systems are aperiodic, deterministic, and sensitive to slight variations in initial condition.
The latter property presents the problem that behavior of the system cannot be predicted for a sig-
nificant period of time even though for the next instant, it is completely predictable. The frequency
domain and time domain properties of chaotic systems have generated interest in the military com-
munications field. Midshipman Reddell has explored the advantages of a communication system
based on a chaotic carrier for military purposes. He used digital signal processing techniques to im-
plement the system, perform frequency domain analysis, and generate system performance curves.
A series of computer simulations were used to enhance system performance. He developed a digital
transmitter that is difficult to localize and detect by exploiting some of the natural properties of
chaotic systems. The use of discrete methods allowed for considerable improvement over earlier
schemes. He demonstrated a new dual synchronizing receiver scheme that works by storing samples
over an entire bit period prior to estimation. Results show significantly better bit error probabil-
ity performance in comparison to previously published methods. He also developed a systematic
method to further improve the bit error performance and covertness of the system by optimizing
the selection of the modulation parameters. This involved a comparison of the average energy per
bit and testing each parameter set for stability using the Lyapunov exponent method. Research
concentrated on developing a system that works effectively without a conspicuous signature in the
frequency domain. Such a system should be extremely useful for covert wireless communications.

Keywords: chaos communication, digital signal processing, Lyapunov exponent, dual synchro-
nizing response system
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Chapter 1

Introduction

Chaos has always existed, but it took a new perspective to reveal it. In processes from
scientific experiments to every day life, the assumption is often made that if a system is
started under similar initial conditions, it will produce similar results. In fact, we make
this assumption often enough for it to be taken for granted. For example, the temperature
of a chemical reactant can never be measured exactly. A chemist accepts this limitation,
assuming qualities like reaction time will vary only slightly due to measurement error. In
the 1960’s, Edward Lorenz identified a case where this assumption did not work and became
one of the first visionaries in the new field of Chaos to explore why.

In chaotic systems, small variations in initial condition can lead to substantially differ-
ent outcomes. For this reason, whenever measurement error exists the state of even well
understood chaotic systems cannot be predicted significantly into the future. While study-
ing weather models, Edward Lorenz found perhaps the most well-known and commonly
experienced example of this idea. Weather forecasters have great difficulty making accurate
forecasts more than a few days into the future. This is true no matter how many observation
stations are available or how often measurements are recorded. The weather system is too
complex and too sensitive to small changes [1]. Lorenz described it as the Butterfly Effect.
This idea illustrates that a butterfly flapping its wings here at the Naval Academy may
eventually and even relatively quickly affect the weather across the globe.

1.1 Why Chaos?

The idea that anything can be calculated in closed form with enough information and com-
puting power does not apply to chaotic systems. Therefore, a paradigm shift from the
conventional approach of science is required. More computing power and more sophisti-
cated measurement techniques only improve near-term predictability. The long-term state
of chaotic systems still cannot be calculated.

This is not always a problem. Now that mathematicians and other scientists are look-
ing for and studying chaos, a number of interesting properties of these systems are being
discovered. As counterintuitive as it first seems, there are a number of reasons why chaotic
systems may actually be useful in the field of communication.
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Interest in the field of chaos is growing in academic communities and military research
groups. In fact, the Army Research Office (ARO) has gone as far as to recently name
communication with dynamical systems one of its seven areas of concentration [2]. Also, the
Office of Naval Research (ONR) runs a continuing program investigating the use of nonlinear
dynamics, including communication on chaotic carriers.

Chaotic systems have a number of special properties that are worth investigating for
communication.

e Apparent Randomness in the Time-Domain - Chaotic systems look random in
time because they are both aperiodic and bounded. This property is worth exploring
for covertness.

e Natural Synchronization - Two chaotic system can be made to synchronize with
each other relatively easily. Synchronization turns out to be fortuitous for creating a
communication system and is a fundamental requirement for our system to work.

e Interesting Control Applications - Small influences applied intelligently can dra-
matically influence a chaotic system. Making small adjustments at opportune moments
may allow for the ability to control large amounts of energy. This could be very useful
for a high-power transmitter. While this idea is not directly explored in this project,
some techniques we develop can be adapted.

One question that frequently comes up is how does this system compare to spread spec-
trum techniques? After all, there are some apparent similarities. Both systems use pseudo-
random techniques and transmit with energy distributed over a wide frequency range. The
primary difference is the method by which the carrier signal is generated. We explore the
relationship between these two techniques further.

It’s always good to try new approaches to the same problem. Spread spectrum systems
have some disadvantages. Perhaps a chaotic system will address them. Or, as we sus-
pect, chaos might be best for specific applications. Mass-market personal communications
is probably not one of them.

1.2 Project (GGoals

Our initial focus in developing our chaotic communication system was to improve the trans-
mitter’s covertness. In every military community there is some unanswered need to prevent
an opponent from locating one’s transmitter. With standard transmission systems, elec-
tronic warfare techniques that have been in use for many years can easily pick out a radio
transmission from the surrounding noise and deduce its position.

These systems are also left more vulnerable to jamming, since they concentrate their
energy around one carrier frequency. Essentially, all it takes to jam a transmission is to
overpower the real transmitter. The term commonly used for this says it all; the energy
required to jam is called burnthrough.
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We attempt to hide a transmission by blending it with the background. This equates
to hiding the transmission energy below or close to the existing noise floor. Analysis and
visualization of this process will make the idea more clear in chapter 9.

We design and investigate our system with the idea of camouflage in mind. In the end,
more time is spent and more of our interesting results relate to the challenges of discretely
generating chaos, improving system performance, and characterizing the effects of different
parameters.



Chapter 2
Chaos

James Yorke offered an intriguing name that took hold for the discipline previously referred
to as non-linear dynamical systems. The use of the word chaos originated from his 1975
paper “Period Three Implies Chaos.”[3] There remains a few different rigorous definitions
of the term; however, Steven Strogatz offers a widely accepted colloquial definition. He ex-
plains, “chaos is aperiodic long-term behavior in a deterministic system that exhibits sensi-
tive dependence on initial conditions.” [4] Chaotic systems develop according to deterministic
relationships but appear to behave randomly.

The equations that describe such systems can look deceivingly simple. There are low-
order chaotic systems as well as high-order ones. Surprisingly, even low-order chaotic systems
exhibit rich variety and beautiful complexity. Simple equations can have complicated be-
haviors. The system depicted in Figure 2.1, for example, is known as the Lorenz Attractor.
This chaotic system is so famous in the field that an image of the ‘butterfly wings’ can be
found in numerous publications ranging from specialized papers to popular magazines. The
Lorenz system is heavily used throughout this project.

It is worthwhile to explain each of the properties that make up chaos.

2.1 Deterministic Systems

One fundamental concept for appreciating chaotic systems is that they are not based on
random processes. When choosing between two paths at a fork, a random or stochastic
process would choose one based only on some probability. No definite prediction can be
made. On the other hand, to fit the definition above, chaotic systems must be deterministic.
If they exist in a discrete space, a map can relate one state to the next. If they are continuous,
a function can describe the flow. Therefore, knowing enough about a system’s state and how
it develops, we could exactly predict what path it will take. More frequently, we encounter
chaos without knowing a function or map that describes how it develops.

Using the weather as an example again, the system is too big and has too many variables
to be written down in the form of an equation. Lorenz’s system is merely a model for one
of many processes. The Lorentz equations model the convection and rolling of a fluid being
heated at the bottom of a container and cooled at the top.
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2.2 Sensitive Dependence on Initial Conditions

The second and equally important property of chaotic systems is sensitive dependence on
initial conditions. The consequence of this property is that even if a perfect model for the
global weather system that took into account every possible variable was known, it would still
not be useful for long term weather prediction. This is because small errors in measurement
can never be completely eliminated. A weather station might report the temperature to
be 25.00°C. instead of 25.00001°C. In chaotic systems, these small errors greatly affect the
future behavior of a system. Figure 2.2 illustrates this concept.

Sensitive dependence on initial conditions means solutions of a system are dramatically
effected by small changes in their initial condition. Bounded systems will exhibit complex
aperiodic behavior with unstable orbits. Such systems are referred to as chaotic. Later,
we need a metric to judge whether or not a particular system is chaotic. As a matter of
terminology, a chaotic system has a chaotic orbit or flow.

A statistic called the Lyapunov exponent measures the exponential rate at which the
error between two nearby solutions of a system grows or decreases. If this error grows on
average, or the Lyapunov exponent is positive, then sensitive dependence on initial condition
is exhibited. If the error decreases and both initial conditions settle into the same solution,
then the Lyapunov exponent is negative and the solution is stable. Definition 2.2.1 below,
formally defines sensitive dependence on initial conditions for a map, or discrete system [5].
In chapter 5 we provide more details about the Lyapunov exponent for a flow, and how it
can be calculated for a known system.

Definition 2.2.1. Let f be a map on R. A point xy has sensitive dependence on ini-
tial conditions if there is a nonzero distance d such that some points arbitrarily near xg
are eventually mapped at least d units from the corresponding image of xy. More pre-
cisely, there exists d > 0 such that any neighborhood N of xy contains a point x such that
|f*(z) — f¥(x0)| > d for some nonnegative integer k.

2.3 Dense Orbits

Since a chaotic system is bounded, solutions remain in a constrained phase space. The
Lorenz system, for example, exists in a fixed three-dimensional space that looks like a pair
of wings. Since the system is both aperiodic and deterministic, every point in that space
must eventually be touched as the flow evolves. If the same point was ever revisited by a
flow, then that flow would be periodic. A dense orbit means that between two nearby parts
of an orbit, no matter how close together, there are or will be infinitely many other parts to
the same orbit sandwiched in between. Figure 2.3 illustrates what happens as the Lorenz
system is allowed to evolve for progressively longer periods of time. The idea of a dense orbit
begins to develop.
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Figure 2.2: Demonstration of sensitive dependence on initial condition. Time
series view of z(t) term for two systems started with similar initial conditions.
(a) Initial x value —3.20 and —3.21 (b) Initial = value —3.20 and —3.201.
Notice that a ten-fold improvement in accuracy of the two starting points
does not significantly increase the time for which the two systems follow similar
orbits.
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Figure 2.3: Illustration of a dense orbit. The three plots show the same flow
of the Lorenz system. Each is started with the same initial condition, but
iterated for progressively longer time periods. The square areas indicated
are expanded in the plot to the right to show that given more time, the flow
will pass an infinite number of times through a small volume. Note that any

apparent intersections of orbits actually have different z(t) values because
the system is aperiodic.

y(®)
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w T T
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an orbit or flow is chaotic if it’s not asymptotically periodic, is bounded,
and the Lyapunov exponent of the system is greater than zero
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Figure 2.4: Illustration of an attractor. Flows of the two initial conditions
zo and x1 both end up in the same forward limit set.
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Chapter 3

Communication Scheme

Our system for sending a message using a chaotic signal as a carrier is largely based on work
shown by Cuomo, et al. in [7]. Our improvements are motivated by the desire to discretely
implement their system and to improve it’s performance from a communications perspective.
Our goal while doing this is to create a system specialized for covert transmissions or signal
camouflage.

Several schemes for communication using chaos have been tried. See [7],[8], [9], [10], [11],
and [12].

The one we determined would be most useful for discrete implementation and covert
transmission is parameter modulation.

3.1 Parameter Modulation

Parameter modulation works by first having two identical chaotic systems — one running in
the transmitter and one in a receiver. By synchronizing the two, their instantaneous states
are very close. (Synchronization is discussed in chapter 4).

A binary message is sent by either maintaining the synchronization or breaking it. When
the receiver is synchronized with the transmitter over some defined bit period, this is inter-
preted as a zero-bit. If over the same bit period, the receiver is out of synchronization with
the transmitter, this is interpreted as a one-bit.

In a real communication system, the receiver is separated by a significant distance from
the transmitter. All it can know for sure is its own state and a single influence received from
the transmitter either by wire or wirelessly. Therefore, the determination of whether the
systems are synchronized or not has to be made using only this information.

This can be done by using an error term comparing the received influence signal with
what the system would expect,

ew(t) - xinfluence - xprediction- (31)

The Zinfiuence term would be the output of the transmitter altered by noise and other
channel effects. The Zp,cgiction term is what the receiver is expecting to receive based on its
own parameters and state.
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This instantaneous error must be evaluated over an entire bit period. One way to do this
is to evaluate the integral of the absolute value of the error term.

to+Thit
Bit Error = / e*(t)dt. (3.2)
to

To do this in an electrical circuit and determine the received bit would require some
type of low pass filter and a comparison of the bit error with a threshold value. With the
unavoidable presence of noise, even two perfectly matched parameter sets would still lead to
some observed error. Our implementation on discrete hardware offers some advantages for
this comparison process.

3.2 Discrete Implementation

We could implement a discrete system analogous with the one described above. Instead of
a continuous comparison of the influence signal with the corresponding receiver state, the
comparison would be done at a fixed sample rate.

N
Bit Error = Z e*n]. (3.3)
n=0

However, this would not take advantage of the added flexibility of running the system on
a Microproccesor.

Our discrete chaotic transmitter operates in the same fashion as the continuous version
described previously. At the beginning of every bit period, the transmitter chooses between
two parameter sets based on the message bit to be sent. One term of the chaotic system is
sent through the medium to the receiver.

The first discrete chaotic receiver we developed also operates very similarly to the con-
tinuous one described. The error at each sample is stored in the processor’s memory over
the duration of a bit period. At the end of each bit, the stored error values are squared
and summed. This sum is compared to a predetermined threshold value. Bit Error less
than the threshold causes the signal to be interpreted as a zero-bit and greater than the
threshold is interpreted as a one-bit. The threshold value can be set half-way in between
the error expected due to channel noise and sampling errors when the systems are perfectly
synchronized and this error in addition to error experienced when the two systems do not
have matching parameter sets.

3.3 Improvements

Similar to most processors, the digital signal processors used to implement the chaotic trans-
mitter and receiver in this project have memory to store samples and can perform complex
logical operations. We take advantage of these capabilities.
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Our new dual synchronizing response system corrects two issues that arise when
using the basic scheme described above. First, the above scheme assumes that at the begin-
ning of a bit period the systems are synchronized. In that case, without any noise, a zero-bit
would cause the bit error to be zero. In reality, the systems would not start off synchronized
due to noise or if the previous bit was a one-bit. To make up for this, the bit period must
be lengthened so that the systems can synchronize. This will result in a lower data rate.

The second problem is that the transmitter cannot use radically different parameter sets
without further lengthening the bit period. Using the parameter modulation scheme, an ideal
set of parameters would immediately cause perfect synchronization when the transmitter and
receiver parameters matched, and immediately large error term when they were mismatched.

We notice that choosing different parameter sets does not totally break the synchroniza-
tion. It causes the systems to never exactly match, but the receiver still tends to follow the
transmitter to some extent.

To address both of the above problems, we run two response systems simultaneously on
the same receiver processor. One response system parameter set corresponds to a zero-bit
and the other corresponds to a one-bit. Both systems attempt to synchronize with the drive
system over the entire bit period. Then, the sum of errors, as in eqn. 3.3, experienced by
both response systems are compared. The system with less error determines the received
bit and both response system states are updated to reflect the better match. This process
requires memory and comparison ability not easily available in a simple component based
implementation. By taking advantage of the abilities of DSP hardware, we have achieved
better performance than the system in [7].

Figure 3.1 shows the four cases of our dual synchronizing receiver system. The drive
system chooses parameter set A or B based on the message bit. The plots show the drive
system and how the two response systems (one using set A and one using set B) respond.
We desire that a matched set of parameters between the transmitter and receiver cause a
quick and tight coupling while a mismatched set lead to large error.

Figure 3.2 shows a single bit window used in our dual synchronizing receiver scheme.
This particular window is 100 samples long. The influence signal from the transmitter is
affected by additive Gaussian noise and the two receiver versions attempt to synchronize to
the influence signal. The error squared is plotted in the bottom subplot. The sum of squares
of the error for both receiver systems is used to determine the best match with the influence
signal. This comparison is used to estimate which bit was received.
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Figure 3.1: All possible combinations of bit sent and receiver system for our
dual synchronizing receiver scheme, plotted as voltage vs. sample number.
(a), transmitter and receiver use parameter set A (b), transmitter uses set
A, receiver uses set B, (¢), transmitter uses set B, receiver uses set A (d),
transmitter and receiver use parameter set B.
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Figure 3.2: Receiver evaluation of a particular bit, (a) Influence signal with
noise effects and attempts to synchronize by both receiver systems (Volts vs.
Sample Number), (b) Error? between both receivers and the influence signal
(Volts? vs. Sample Number).
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Chapter 4

Synchronization

With the properties of chaos already discussed, it seems strange that chaotic systems could
be used for communication systems. How can a message be sent if the receiver does not
know the state the transmitter? The particular scheme we use to transmit a message has
been discussed in greater detail in chapter 3. Now, we analyze a surprising property of some
chaotic systems. This is the natural ability to synchronize to an identical system by sharing
only one state variable [13],[11].

We consider the famous Lorenz System:

T O'(y-l'),
Yy = pr—y-— 2, (4.1)
z = xy— Pz

The parameters o, p, and 3 have been removed from their original context in Lorenz’s
convection process but they are still significant for our purposes. It turns out that the
Lorenz system given above has a dynamic range (range of x, y, and z solutions) that is
impractical for the Digital-to-Analog and Analog-to-Digital converters (CODECs) attached
to our DSPs. Additionally, the system evolves at a impractical rate for the bandwidth of our
CODECs. For these reasons, we will use a magnitude and time scaling change of variables.

The PCM3006 CODECs in our hardware are capable of operating between -1V and +1V.
They take 48,000 discrete samples per second. By the Nyquist Sampling Theorem (Theorem
4.0.1 [14]), they can accurately sample and reconstruct signals with a maximum frequency
of 24 kHz.

Theorem 4.0.1. Let x(t) be a bandlimited signal with X (f) = 0 for |f| > fa. Then x(t)
is uniquely determined by its samples x(nT), n=0,£1,+2, ... if

fs > 2fn, where fs = % T is the sampling period and fyr is the highest frequency of the
signal. [14]

We will choose a scaling factor by % that allows the x term to be sent to the Digital-to-
Analog converter without saturation. The system will be sped up or slowed down by a time
scale Ty that allows efficient use of the available 24kHz CODEC bandwidth. These terms
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will need to be adjusted based on the particular parameters chosen and the time scaling will
be tied to the step size of the differential equation solver. The variable u(t) will represent
the amplitude and time scaled signal to be transmitted.

fs

—1 <u(t) <+1, and U(f) =0 for |f| > 5

The uniform scaling is given by the substitution:
€z Y

z
Uzz,vzz,wzz. (42)
Then,
) r o
U = Z = Z(AU — Au),
0 = L= l(Apu — Av — A*uw)
A A ’
, z 1, .,
W= o= Z(A uv — Afw).
Time scaling by T is achieved by the following change of variables:
t dr 1 dt 1
= — and. — = — 2 — — 4.3
TTTeMYd T Tedt T (4.3)

Utilizing the chain rule, the change of variables in equation 4.3 affects the original system
as follows:
dx dedt _ dr
dr dt dr — "dt’
dy dydt . dy
dr dtdr — Tar
dz dz dt dz

dr ~ dtdr Yat’
(4.4)
Thus, the time and amplitude scaled drive system (transmitter) is:
u = Tso(v—u),
v = Ts(pu —v— Auw), (4.5)

w = Ts(Auv — pw).

4.1 Drive - Response Coupling based on Parameter Set
Match or Mismatch

In our discrete scheme, we further an idea initiated by Cuomo, et al. [7]. They sent a binary
message by flipping the # parameter of the drive system between two values. This adjustment
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slightly upsets the synchronization between the drive and response systems. The presence
or absence of error at the response system could then be used to determine the message bit.

Coupling is achieved by sharing the u term from the drive system with the response
system. Notice in equation 4.6 that u takes the place of u, in the equations for ¥, and w,..
The variable u is the influence signal. This coupling can be realized simply as a wire or with
more sophistication, a wireless connection.

We maintain the same influence configuration as used by Cuomo, et al. but add complex-
ity by allowing all three parameters in the response system to be independent of the drive
system. The transmitter alters the drive system parameters o, p, and (3 based on a message
bit. Parameters o, p,, and (3, represents the counterpart parameters in the response system.
These will either be identical or mismatched. Figure 4.1 shows the coupling scheme used.

u'=1Tso(v —u)
v'i=Ts(pu —v — Auw )

e w'= T:(Auv — fw)
W= Tsor(vr— tr)
H=T(plll - v — A )
wr'=T:(Afy - — frwr)

Figure 4.1: Our coupling scheme cousists of replacing the u, term in the
receiver with u from the transmitter in the equations for v and w... The
parameters may either be matched or mismatched.

The response system receiver is

Uy SOp Up — Up
Uy S PrlU— Vp —  UW, 4.6
Wy S UV — ﬁrwr

rror terms are used to evaluate synchronization

u U — Uy
v V— VU, 4.
w W — Wy

Considering all the error terms at once

e u v w
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Taking the derivative with respect to time yields:

b = (04— 1),
= Tso(v—u)— Tso. (v, — u,),
= Ts(ov — o0, — (ou — opu,)).

& = (0—1), (4.9)
= Ts(pu — v — Auw — pyu + v, + Auw,),
= Ts(=(v—wv) = Au(w —wy) + (p = pr)u)
= Ts(—e, — Auey, + (p — pr)u).

bw = (W —uy)
= Ts(Auv — fw — Auv, + Gow,),
= Ts(Au(v —v,.) — fw + Bw,)
= Ts(Aue, — fw + Gow,).

4.2 Lyapunov Function Analysis of Stability

Lyapunov functions generalize the idea of potential energy and can be used to characterize
the asymptotic behavior of a systems. If we can find a Lyapunov function for the error
system above, we can show that it approaches zero over time, and thus the two Lorenz
systems synchronize [15]. Again we follow Cuomo’s lead and use his Lyapunov function as
the basis for the following [7].

1.1
E(ey, ey, €p) = 5(—63 +e2+e2). (4.10)
o

To show synchronization, we want to find that the function E(e,, e,, e,,) has a long-term
negative slope and so error decreases along solutions of e(t) in equation 4.8. Taking the
derivative with respect to time:

dE_ OB O OB O OF Oeu
dt de, Ot Oe, Ot Oe, Ot
€uly : .
= + €4y + €yl
o

= TS{(U_J—UT)(JU — o0, — (ou — o,u,))
+(v —v)(—ey — Auey, + (p — pr)u)
(w — w,)(Aue, — (Bw — Bw,))}.
If the drive and response system parameters are the same (Parameter Set Match),
o = o,

p = Pr
ﬁ:ﬁr
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then,
E
Cﬁi_t = Ts(euer — €, — € = fe,)
1
= Ts(—(eq — 5%)2 - Zei — Bé2). (4.11)

Since E is positive definite and F is negative definite with Ty > 0, Lyapunov’s theorem
implies e(t) approaches 0 as t — oo . Synchronization will therefore occur. This analysis
does not indicate how fast it occurs, but experimentation shows it to be fast enough to
achieve a working system.

If the drive and response system parameters not the same (Parameter Set Mismatch),

o # o,
pF pr
B # 5
then,
Cii_f = TS{@(UU — 0,0, — (ou — o,uy,))

+(v — vr)(—eo — Auew + (p — pr)u)
+(w — w,)(Aue, — (Bw — Brw,))}.

The derivative above is inconclusive for analysis of the system’s ability to synchronize.
The next few chapters show our process to optimize the selection of parameter sets for the
drive and response systems. This becomes a six dimensional problem and many technical
difficulties arise. For certain parameter values the systems do not produce chaotic behavior.
In fact, solutions of the Lorenz system, for example, can head towards infinity, reach a steady
state, or settle into a periodic orbit if the parameter set is chosen improperly. None of these
scenarios are acceptable because they will not work for a covert communication system.
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Chapter 5

The Lyapunov Exponent Search

The Lyapunov number measures the average rate of change for error between two nearby
solutions of a system. A Lyapunov number greater than one indicates that at any particular
time, two orbits near each other will tend to grow apart. If it is less than one, then nearby
orbits grow closer and approach equal solutions as time progresses toward infinity. Figure
5.1 illustrates these two cases. The Lyapunov exponent is simply the natural logarithm of
the Lyapunov number. Accordingly, if the Lyapunov exponent is positive, then small errors
grow and if it is negative, they diminish. It can be used in several analysis related to stability.

Diverging
Flows

X(t)

Stable Periodic
Orbit

x(t)

%

Figure 5.1: Diverging flows and a stable, periodic orbit.

Xy

e use the Lyapunov exponent to help identify if a system demonstrates chaotic behav
ior for a particular parameter set. ne requirement for chaos is the property of sensitive
dependence on initial conditions. An orbit of such a system is unstable so nearby orbits get
driven away. If the system is bound to a constrained space and the error grows between two
orbits started close to each other, then the systems will be aperiodic and exhibit sensitive
dependence on initial conditions. The Lyapunov exponent will be positive.

The Lyapunov exponent is particular to a specific system and set of parameters and it
usually can only be approximated by an averaging operation over a long period. Approx
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imation of the Lyapunov exponent is easiest for maps since it is referenced as growth rate
per step of the map.

Definition 5.0.1. Let f be a map of the real line R. The Lyapunov number L(x;) of the
orbit {z1, 9, x3, ...} is defined as

L)) = lim (1f/(@)] .. |/ (@) )",
if this limit exists. The Lyapunov exponent h(z;) is defined as
h(ar) = lim (1/m)lln | £/(@)] + .. +In | @)

if this limit exists. Notice that h exists if and only if L exists, and In L = h. [5]

For flows, evaluation of the Lyapunov number and exponent is more difficult. One method
is to transform the continuous system into a discrete one by evaluating the time-1 map of
the system. This map represents the state of the system one unit time step later. For a
more in depth discussion on computing the Lyapunov exponent for flows, see [16]. We will
use the more accessible definition in [5].

Definition 5.0.2. The flow Fy(v) is the point at which an orbit started at point v ends
up after 7' time units. The Lyapunov number and exponent of the flow v(¢) are the
Lyapunov number and exponent of the associated time-1 map Fp(v).

5.1 Estimating the Lyapunov Exponent by the Varia-
tional Equation Method

For the flow, v = f(v,t) we wish to estimate its Lyapunov exponent for a general set of initial
conditions. One method for doing this is analogous to the expression given in definition 5.0.1
for maps. We refer to this method as the variational equation method.

Given a particular flow, we will also consider the flow started nearby.

‘:’ - f(V,t),
S o= @) (5.1)

We are interested in quantifying the separation of these two orbit as time progresses so
let,

5, (t) = v(t) — ¥ (t). (5.2)
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The time derivative of dy(¢) is,

o (t) = v(t) —v(), (5.3)
= f(V,t) - f(‘??t)?
= f(v,t) = [TSE],

where [T'SE] represents the Taylor series expansion of f(Vv,t) about v. The first-order
approximation works for our purpose as long as v is close to v.

f(v,t) = f(v,t)+ f'(v,t)(v(t) — v(t)), for ¥ close to v. (5.4)
Equation 5.3 above can then be rewritten as:

0u(t) = f(v,t) = [f(v,t) = f(v,t)6,(t)]
= Df(v,t)-8,(t). (5.5)

Equation 5.5 is known as the variational equation. It describes the growth rate of
small errors along an orbit. To estimate the Lyapunov number, we need to solve equation
5.5 for one-unit time steps along with solutions of f(v,1).

V, y

Figure 5.2: Illustration depicting the two flows that con-
tribute to the variational equation, v(¢) and v(¢).
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For the Lorenz system,

r = —or+oy
fvyt) =X y = —zz+rz—y (5.6)
zZ = xy—bz.

The time derivative of the differential equation (Jacobian matrix) is,

—0 o 0
Df(v,t)= | r—=z(t) -1 —z(t) |. (5.7)
y(t) xz(t) —b.

Therefore the variational equation for the Lorenz system is,

(iv —0 o 0 O
sty =4 | = r—20) -1 —2@) |-[ 4 |- (5.8)
5 0 o) b ) \s

Performing the dot product in equation 5.8 yields the followin